
Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 12, December (2017)

ISSN: 2395-5317 ©EverScience Publications 67

Score-Based Test Case Prioritization and Mutation

Adequacy Check

J Santhosh

Assistant Professor, Department of Computer Science, Sree Narayana Guru College, K G Chavadi, Coimbatore,

Tamil Nadu, India

Mini N

M.Phil Research Scholar, Department of Computer Science, Sree Narayana Guru College, K G Chavadi,

Coimbatore, Tamil Nadu, India

Abstract – Software testing is an inevitable part of a Software

Development Life Cycle (SDLC). Under the umbrella activity of

software quality assurance, software testing plays a vital role in

shaping the quality of software. It is aimed at providing high

quality software (with minimal errors) that is cost effective. Often

the cost of a product depends upon the time and efforts spend over

molding it. In SDLC, since majority of the time and effort are

utilized in testing the software, this phase incurs the major cost

while producing quality software. Hence the focus remains on

how to carry out effective testing with minimum cost. Over time,

various software testing techniques have been devised and

implemented. Each of them had its own pros and cons. Mutation

testing is a white box testing technique that deviates from the

usual testing approaches. When the usual white box testing

techniques relies on different coverage areas (For example:

statement, branch, path) based on control-flow or data-flow

criteria, mutation testing behaves differently altogether, creating

mutant programs for testing. Here, the goal would be to create

such test cases that can distinguish the original program from its

mutants. For effective testing, the test suite needs to be sufficient

enough; clearly eliminating the idea of having large number of test

cases that are similar in nature. Depending on the mutation score,

the focus is on checking the adequacy of the test suite. It also aims

to get the test cases prioritized, thereby improving the

effectiveness of mutation testing.

Index Terms – Software Testing, Mutation Testing, Test

Adequacy, Test case.

1. INTRODUCTION

In recent years software testing technologies have played an

important role in the development of any application [1]. So it

has emerged as a dominant software engineering practice

which helps in effective cost control, quality improvements,

time and risk reduction[2] etc. The growth of testing practices

has required effective software testers to find new ways for

estimating their projects efficiency. The key research area in

this field has been measurement of the metrics for the mutation

testing. Since mutation testing [3] plays a critical role in

effective and efficient software development through the help

of mutants, assessing the progressing the software development

and testing process is very complex.

In this paper an improved, fast and innovative technique for

Mutation testing tool has been developed. The proposed system

measures the test suite adequacy criteria to detect the mutants

effectively and quickly, together with the option of prioritizing

the test cases. A variety of objective has been involved in the

proposed system. One such function involves the software

identifying the defects, that is, the failure of certain test cases

at the time of execution of the mutant program. The proposed

system describes a test case evaluation and prioritization

technique [4] through which the mutants thus detected will be

killed. The techniques used here report the empirical results

measuring the effectiveness of this test suite, which can be used

for comparison. This helps in reducing repeated testing with

similar test cases in the mutation testing, which may have

consumed much time and effort. Here the proposal uses a test

case adequacy check and test case prioritization. They were

compared with respect to their effectiveness for mutation

results.

Test case prioritization helps in ordering the test cases for

execution in a descending order of priority. In this way, the

test cases with the higher priority, based on some adequacy

criterion, are executed first, followed by lower priority test

cases to detect mutants in mutation testing. From the existing

test adequacy test and test case prioritization criteria code-

based and model-based are considered for this research work.

In Code-Based Test Case Prioritization [5], priority to test

cases is assigned based on the source code in the system. Most

of the test case prioritization methods are code-based. In

Model-Based Test Case Prioritization and Mutation Adequacy

Check (MBTCP_MAC), a system model is used to prioritize

the test cases. The MBTCP_MAC may improve the early

mutant detection as compared to the existing system.

MBTCP_MAC may be an inexpensive alternative to the

existing test case prioritization methods. In spite of its potential

association between the range of mutants and the real fault

detection capability, the mutation adequate test suite does not

fully exploit the diversity.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 12, December (2017)

ISSN: 2395-5317 ©EverScience Publications 68

2. PROBLEM DEFINITION

Some software defects [6][7] leads to failure only when certain

local or non-local program variable interactions occur. Mutant

program [8] can also make the output different and it should be

treated well. So mutation testing is performed by changing

some code in the program and testing with the same test suite.

Mutation testing is important in testing because they reflect the

differences in the test results. So, effective test case generation

and performing test case adequacy criteria analysis on mutation

testing is important. Apart from this, there is a huge need to

analyze the quality of the test cases. There are several tools and

techniques have been used in the literature related to the mutant

analysis. In the paper [9] a detailed survey is described about

the mutational testing and test case adequacy test analysis.

Existing solutions for the mutation testing, and test case

adequacy criteria verification systems are carried out as

theoretical analysis, which only depends on the manually

written test cases where the tester should enter the expected and

actual results. So the system needs to convert the code into

machine language to get the adequacy test on the test cases and

have to find the equivalent mutant program effectively.

3. PROPOSED SYSTEM

Test case prioritization helps in ordering the test cases for

execution in a descending order of priority. In this way, the

test cases with the higher priority, based on some adequacy

criterion, are executed first, followed by lower priority test

cases to detect mutants in mutation testing. From the existing

test adequacy check and test case prioritization criteria, Code-

based and Score-Based are considered for this research work.

In Code-Based Test Case Prioritization, priority to test cases is

assigned based on the source code in the system. Most of the

test case prioritization methods are code-based. In Score-Based

Test Case Prioritization and Mutation Adequacy Check

(SBTCP_MAC), a system model is used to prioritize the test

cases. The SBTCP_MAC may improve the early mutant

detection as compared to the existing system. SBTCP_MAC

may be an inexpensive alternative to the existing test case

prioritization methods. However, the existing SBTCP_MAC

techniques do not consider the implicit dependencies arising

due to object-relations.

To overcome this limitation an Extended Finite State Machine

(EFSM) Score-Based Mutation Test Suite Minimization

method using dynamic dependence analysis with test case

mutation adequacy criteria score calculation is proposed. The

proposed method automatically identifies the difference

between the original model and the modified model as a set of

elementary modifications or changes. This proposed method

reduces the size of a given Mutation Test Suite (MTS) by

examining the various interaction patterns covered by each test

case in the given MTS. Whenever the software system

undergoes modification, there is a need for mutation testing and

while performing mutation testing many test cases appear to be

redundant.

Figure 1.0 Proposed System Architecture

The research approach of Test Suite Minimization using

Dynamic Interaction Patterns (DIPs) identifies redundant test

cases and removes them and also the adequacy criteria is

checked. Also, the research work attempts to improve the

mutant detection ability by applying the dynamic dependencies

in the place of static dependencies. The Score Based Testing

(SBT) gives better results in test case prioritization, so the

proposed system enhances the existing score calculation

process with the rule prioritization. The reason is that ituses

systematic approach Domain Specific Language (DSL) that

supports higher level abstractions than general purpose

modeling languages. Hence in this research work, an extended

study on SBT known as domain specific SBT (DSMBT), is

attempted. Experiments were conducted for the sample

Result generation using

SBTCP_MAC

User

Select File to test

MTT (Mutation testing Tool)

SBTCP_MAC

 Test cases

 Mutant programs

 Adequacy criteria threshold

Adequacy check results

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 12, December (2017)

ISSN: 2395-5317 ©EverScience Publications 69

programs developed in visual stuio.net framework. The results

were compared with existing criterion check method.

3.1 Score-Based Test Case Prioritization and Mutation

Adequacy Check (SBTCP_MAC)

The proposed system generates a new mutation testing tool

with the score calculation and rule priority calculation

functions and named as SBTCP_MAC. This allows the tool to

select maximum priority test cases with the consideration of

adequacy check. This will be performed by the fault detection.

Test Suite Prioritization (TSP) facilitates development of

complex systems by increasing the early fault detection

capability and reducing the overall testing time to calculate the

score and detect the adequacy. Reduced test suite is used for

the system model and information on its execution is used to

prioritize the test cases. Executing test model is comparatively

less expensive than testing the entire system. Also less

overhead is involved in test case prioritization using Score

Based Testing (SBT) technique.

In order to find out interaction patterns, dependency based

analysis is used in the system model. There are three types of

dependencies namely structural, behavioral and traceability.

Structural dependency involves dependencies among parts of a

system. It includes system content, data and control.

Behavioral dependency includes abstractions provided by the

use of public interfaces and event broadcast. Traceable

dependency covers inter-relationships between different

artifacts namely dependencies between requirements, design

and code. In structural category, data and control dependencies

among the variables in the system are used to find Dynamic

Interaction Pattern (DIP) whichis used to assign priorities

associated with test cases in the system. Testing activities

supported by dependency analysis consists of SBT, scenario-

based testing and test suite reduction. Among the above three

existing dependency analysis, SBT is taken for

experimentation by using the technique called Dynamic

Interaction Pattern (DIP) prioritization technique. Here after it

is referred as Score-Based Test Prioritization (SBTP).

3.2 Dynamic Interaction Pattern (DIP) Prioritization Technique

System models are represented using Extended Finite State

Machine (EFSM) which is an input for Score-Based Testing

(SBT). From the model specification, Dynamic Dependency

Graph (DDG) is formed based on the conditions which gives

the data and control dependencies among variables (Bogdan

Korel et al. 2002). By using DDG, the data and control

dependencies called Interaction Patterns (IPs) are calculated

which decides the priorities of test cases.

In order to prioritize test cases, the dependence analysis is used

to identify different ways of the added/ deleted transitions

interact with the remaining parts of the model. The principle of

model dependence-based test case prioritization is to identify

unique patterns of interactions between the model and the

added/deleted transitions that are present during execution of

the modified model on test cases. This information is used to

guide the priority choice. During execution of the modified

model on test, there are three possible types of interactions

between a modified part of the model and the remaining parts

of the model:

i. Effect of the model on modification termed as affecting

transitions

ii. Effect of modification on the remaining part of the model

called as affected transitions and

iii. Side effects of transitions caused by the modification.

These interactions may be viewed as computing a model slice.

In the similar way there are three types of interaction patterns

related to each modification (i.e., an added/deleted transition).

 An affecting interaction pattern

 An affected interaction pattern and

 A side-effect interaction pattern.

Figure 2.0 Score-Based Test Case Prioritization and Mutation

Adequacy Check using DIP Technique

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 12, December (2017)

ISSN: 2395-5317 ©EverScience Publications 70

The affecting interaction pattern captures interactions between

model transitions which affect the modification. The affected

interaction pattern captures transitions which are affected by

the modification. Finally, the side-effect interaction pattern

captures interactions that occur because of side effects

introduced by the modification. In this context, consider a side-

effect to be an introduction of a new dependence or a removal

of an existing dependence between other transitions.

Interactions between model transitions are represented as

model dependences between transitions. Consequently, the

affecting interaction pattern, affected interaction pattern, and

side-effect interaction pattern are represented as model

dependence subgraphs (derived from a model dependence

main graph) with respect to added and deleted transitions

(Rachna and Arvind 2012). The system design using DIP

technique is shown in Figure 2.0.

In existing prioritization technique, test cases are randomly

selected and removed from the list whereas in proposed

technique, based on priorities test cases are selected. The

advantage of proposed technique is when interaction patterns

are more, and then priorities will be high which will be

assigned dynamically. Test cases with high priorities are

executed first which detect more number of faults at the

earliest.

Proposed Test case Priority calculation

Input: A set of interaction pattern test distribution

IPS={TS(IP1(t,T)),…,TS(IPq(t,T))}

A set of high priority tests: TSH

A set of low priority tests: TSL

Output: Prioritized test sequence, S

1. p=0

2. while true do

3. sort IPS in the descending order of number of T

4. for every test t in TS(IPi(t,T)) ∑ IPS do

5. if TS(IPi(t,T)) ≠ null then

6. p = p+1

7. remove test t from everyTS(IPi(t,T)) to which

tbelongs

8. insert t into S at position p

9. if p =|TSH| then exit while loop

10. endif

11. if TS(IPi(t,T)) = null then

12. IPS = IPS – {TS(IPi(t,T))}

13. endfor

14. endwhile

15. for p=1 to |TSL| do

16. select randomly and remove test t from TSL

17. insert t into S at position p+|TSH|

18. endfor

19. output S

The above algorithm explains the process of priority

calculation based on the score. Low priority test case execution

is optional. If time permits, one or two low priority test cases

are selected randomly and executed which will not have more

impact on testing performance.

4. EXPERIMENTS AND RESULTS

The proposed system has been created a dataset of mutant and

dataset1 executables for the Windows operating system. This

mutant and dataset1 file collection was taken for the

experiment. This acquired 20 mutant files from the Dataset1,

including .cs, .vb files, were gathered from machines running

the Windows operating system. The dataset1 set contained 100

file.. Some of the files in the collection were either compressed

or packed. These files have added with the mutants, which have

used the following operators.

Type of files for experiments Details

Dataset(Normal Programs) 20 files

Generated Mutant files 20 mutant files

Number of operators used +,-,/,* ,<,> etc.,

Total test cases used 25

Table 1.0 Dataset taken for experiments

The MTT applied on dataset1 software for data mutation

detection purposes. These methods were proposed for

automatic detection of mutant code and score by applying both

the test cases based on the priority. Evaluation performed in

these studies showed that rule prioritization and mutation

detection with different metrics increase the detection

accuracy. The proposed method can use such an approach in

order to overcome quality issues of the software by detecting

the mutants effectively. In addition, this would like to point out

that classifying dataset1 files is also useful and can reduce the

load of mutant files. Also, the large number of mutant programs

in the dataset that could be dissembled indicates that in order

to appear dataset1 and to pass metrics. The first set of

experiments is to compare the performance of different test

cases and calculates the score.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 12, December (2017)

ISSN: 2395-5317 ©EverScience Publications 71

Figure 3.0 comparison chart

Figure 3.0 shows that all strategies perform significantly better

than traditional mutant code detection technique and strategy

with simple test suite priority and score calculation. Since the

inclusion of additional techniques gives the better results in

terms of accuracy, scalability and time. The accuracy is

calculated using the expected result and the actual result by the

tool. If the desired count is similar to the result, then the

accuracy is high. From the theoretical aspects, the proposed

system is more scalable and need less time to complete the test.

5. CONCLUSION

This proposed system introduces improved methods for score

based mutation adequacy criterion and test case prioritization

based on that. The proposed system calculates the adequacy

criterion and a corresponding mutation score, called the

distinguished mutation score based on its formal definition.

The new system aims to reduce the time of testing and verifies

the adequacy for every test case. This differentiates the

mutation adequacy criterion and can be applied to detect the

mutation in the program. This underlying relation provides

theoretical evidence that the distinguished mutation adequacy

criterion is more effective at detecting faults than is the

traditional mutation adequacy criterion. We also provide an

empirical evaluation of the mutation adequacy criteria in terms

of their fault detection effectiveness, test suite sizes, and

various score levels. This uses 20 programs. The mutation

testing tool is implemented using C#.net. The test case priority

has been experimented with the code based tests case methods

and it gives optimal results. Comparison has been made

between the existing system and the proposed system on the

basis of test case adequacy and priority.

REFERENCES

[1] Lima, Igor Ribeiro, Tiago de Castro Freire, and Heitor Augustus Xavier

Costa. "Adapting and Using Scrum in a Software Research and
Development Laboratory." Revista de Sistemas de Informação da

FSMA,(9) (2012): 16-23.

[2] Duvall, Paul M., Steve Matyas, and Andrew Glover. Continuous
integration: improving software quality and reducing risk. Pearson

Education, 2007.
[3] Jia, Yue, and Mark Harman. "An analysis and survey of the development

of mutation testing." IEEE transactions on software engineering 37.5

(2011): 649-678.
[4] Elbaum, S., Rothermel, G., Kanduri, S., & Malishevsky, A. G. (2004).

Selecting a cost-effective test case prioritization technique. Software

Quality Journal, 12(3), 185-210.
[5] Do, Hyunsook, and Gregg Rothermel. "A controlled experiment

assessing test case prioritization techniques via mutation

faults." Software Maintenance, 2005. ICSM'05. Proceedings of the 21st
IEEE International Conference on. IEEE, 2005.

[6] Fenton, Norman, Martin Neil, William Marsh, Peter Hearty, David

Marquez, Paul Krause, and Rajat Mishra. "Predicting software defects

in varying development lifecycles using Bayesian nets." Information

and Software Technology 49, no. 1 (2007): 32-43.

[7] D'Ambros, Marco, Alberto Bacchelli, and Michele Lanza. "On the
impact of design flaws on software defects." Quality Software (QSIC),

2010 10th International Conference on. IEEE, 2010.

[8] DeMilli, R. A., and A. Jefferson Offutt. "Constraint-based automatic test
data generation." IEEE Transactions on Software Engineering 17.9

(1991): 900-910.

[9] Jia, Yue, and Mark Harman. "An analysis and survey of the development
of mutation testing." IEEE transactions on software engineering 37.5

(2011): 649-678.

